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We describe a new algorithm for directly solving Poisson’s equation in cylindrically sym- 
metric geometries. It is based on the use of fast Fourier transforms for the axial solution, and 
a novel expansion in cubic splines for the radial solution. Error and stability analyses of the 
algorithm are included, and the results of test calculations are presented. The algorithm has 
proved stable, reasonably fast, and able to handle very stiff driving functions. 0 1985 Academic 

Press, Inc. 

I. INTRODUCTION 

A number of direct methods for solving the discrete Poisson equation in rec- 
tangular coordinates have been developed [l-4]. For further studies on such 
methods see Wilhelmson and Ericksen [3] and James [4]. 

In this paper, we present a novel combination of a numerical transform technique 
(FFT) and an expansion in cubic splines [S] for the solution of Poisson’s equation 
in cylindrically symmetric geometry [6]. This combination may also be applicable 
to other separable coordinate systems. The transform is used in the z-direction (the 
axis of symmetry), thus reducing the problem to an ordinary differential equation in 
the radial coordinate. To solve this equation, we have approximated the solution 
between each set of grid points by a cubic spline, chosen to satisfy the equation and 
to provide continuity through the second derivative at the endpoints. This techni- 
que belongs to the general class of approximation schemes termed finite element 
procedures. The technique allows for non-uniform grid spacing in r, a property we 
have found to be important in a number of applications. The use of the sine 
transform in the z-direction, however, restricts the algorithm to applications involv- 
ing uniform axial grid spacing. 

Restrictions of this approach arise from requirements on the boundary con- 
ditions. It can be applied to problems in which Dirichlet or Neumann (or mixed) 
boundary conditions are specified. Although the technique could probably be 
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applied to more general cases, the boundary surfaces should lie on coordinate sur- 
faces. 

This method was developed to satisfy the need for a fast solution to Poisson’s 
equation under conditions where the source may be a rapidly varying function of 
space, such as arise, for example, in the study of the evolution of an electron 
avalanche taking into account the electric field generated by the avalanche space 
charge. The solution to Poisson’s equation in this application has presented great 
difficulty. The problem is stiff and requires speed in the computation of the field in 
order to carry out the simulation of the evolution of an avalanche for a significant 
length of time. The algorithm described in this paper has been successfully applied 
to this problem [7, 81. 

In Section II, the algorithm is discussed. Analysis of the stability and truncation 
error is given in Section III, and a discussion of the performance of a Fortran 
program that implements the algorithm and example calculations are given in the 
last two sections. 

II. DESCRIPTION OF THE ALGORITHM 

We wish to solve the two-dimensional Poisson equation 

V’cp=p (1) 

for the function &(r, z) in terms of the driving function p(r, z) in the cylindrical 
domain: 0 <z < a, 0 < r < R with #(r, 0) = #(r, a) = 0. 4 may be expanded as 

4(r, z) = 2 tin(r) sin 5 z 
n=l 

where N, is the total number of grid points in the z-direction. Putting Eq. (2) into a 
z-discretized form of (1) and using the orthogonality properties of the basis 
functions, we obtain 

2+‘%+2 824 
ar2 rar h: 

where 

p(r,z)= z p.(r)sinFz 
?I=1 

(3) 

(4) 

and h, is the grid spacing in the z-direction. Fast Fourier transform algorithms may 
be used to obtain p,(r) from p(r, z), and to obtain qi(r, z) from Q,,(r). Thus the 
problem reduces to numerically solving Eq. (3) in an efficient and stable manner. 
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For this purpose we use a technique utilizing a set of cubic polynomial spline 
functions and find it to be convenient and accurate in solving this equation even for 
cases where the variation of p,(r) is relatively stiff [7]. 

The r-axis is partitioned into a set of N, points { ri}, with separation hi between ri 
and ri+ 1. A set of N, cubic spline functions 

Si(r) =,go + Ti,j(r- ri)’ . 

is introduced, and the transformed potential da(r) is approximated by &(r) for 
ri_ 1 < T < ri. To determine the coefficients (Ti,j}, 4,,, &, and 4:: are required to be 
continuous at each grid point. We also require Si to satisfy the differential equation, 
Eq. (3), at each grid point. In this context, the endpoints may be regarded as 
collocation points. These conditions imply, respectively, 

Ti,o= Ti_ 1.0 + hi_ 1 Ti_ 1,1+ jhf_ 1 Ti- 1,2 + $A:_ 1 Ti- I,3 (64 

T,l = Ti- 1,1+ hi_ 1 Ti_ 1.2 + @_ 1 Ti_ 1.3 (6b) 

T;,2 = Ti- 1,~ + hi- I Ti- 1,3 (6~) 

Ti.2 +.LT,l + giTi,o=Pn(ri) (6d) 

where 

and 

These equations, along with two boundary conditions, are sufficient to specify the 
coefficients, Ti,j, and an approximation to the function and its first three derivatives 
is thereby determined. 

Through introduction of the splines, the solution of Eq. (3) has been reduced to 
the numerical solution of 4N, simultaneous, linear equations in 4N, unknowns. 
After tedious algebraic manipulation, the coefficients of all but one of the powers of 
(r - ri), usually either ( T,,} or { T,, }, can be eliminated. The result is a set of 
equations in tridiagonal form (see Appendix). Assuming we keep the equations for 
the set {T,,}, we obtain 

1 Q,j T’,, = gi (7) 

where the rri are related to the original driving function, p,(ri), and the matrix Q is 

in tridiagonal form. Specific formulae for Q and _a are derived in the Appendix=for 

the boundary condition b(R) given. = 

581/51/3-6 
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Equation (7) may then be solved to determine the spline coefficients, { T,,O). The 
remaining coeffkients may be determined from 

Ti,J= Wi+EiTi-l,o+FiTi,, 

Ti.2 = Pi -gi T,, -fi Ti.1 

Ti,x=k(Ti+l,2-Ti.2) 
I 

(84 

(8b) 

03~) 

(see Appendix for values of constants). 
In order to avoid problems with an exponentially growing round-off error, we 

used the following technique to solve Eq. (7) [9]. 9 is first factored into two 
matrices, Q = g. L, where 

= = 

Ui,k = ui,i+ 1 6&k - 1 + Ui,iSi,k (9) 

and 

Li,k = Li,i- 1 6i,k + 1 + Li.iSi,k. 

There is some freedom in choosing this factorization, and we choose Ui,i = 1 for 
convenience. The tridiagonal equations then are 

where 

U,j= 6,j + UiJ,j- * 

Li,j= dihi,j + liSi,j+ 1 

and 
li= Q,i- 1 
di=Qii-uiQi+l,i 

Qii+l 
ui= d,,,* 

Defining L. _TO = G, Eq. (9) may be written as two equations: = 

g*_G=g 

and 

Wa) 

L._T=_G. (lib) = 

Equation (lla) is readily solved for G, and then (llb) is solved for _TO. In these 
solutions, Eq. (1 la) must be iterated inwards, and (1 lb) iterated outwards in order 
to avoid numerical round-off error problems. 
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III. ROUND-OFF ERROR STABILITY AND 
TRUNCATION ERROR ANALYSIS 

In order to analyze the stability of this algorithm to round-off errors, we will 
assume a uniformly spaced partition SO that hi = h, fi = l/ih, and 

In the limit of large i, our driving function will always approach zero, and Eq. (7) 
reduces in this limit to 

Neglecting the term in AT, the general solution to this equation is 

Ti,o=A~i+B~-i 

where 

i~~[l-~g+Jqqg]. 
6 

(12) 

(13) 

(14) 

This solution consists of exponentially growing and decaying terms. In an 
analytical solution, the growing term would be discarded due to the boundary con- 
dition at r + co. For a numerical solution, however, small round-off errors can 
introduce a small amount of this growing solution, resulting in large errors for large 
i. This problem is eliminated by factoring the tridiagonal, 2nd-order finite difference 
equation, Eq. (7), into two lst-order finite difference equations, each having only 
one homogeneous solution, providing that we can always choose our direction of 
integration such that the homogeneous solution is decaying. 

Choosing the factorization given in Eqs. (1 1 ), for 0 > h*g > -12, the elements of 
$I and ,L, Ii, di, and ui, approach for large i 

Ii-r - l+$g ( ) 
di+ 1 +A,/-h*g(h*g+ 12)=d 

ui-+ ’ 
d ” 
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The vector _G satisfies 

Gi + uiGi+ , = oi, 

which in the limit of large i becomes 

with solution 

Gi=A 

For - 12 < h2g < 0, this solution grows exponentially with i, and therefore Eq. (1 la) 
must be solved by starting at i = N, - 1 and iterating inwards. 

Similarly, the equation for _To is 

di Ti,o + li Ti - I,0 = Gi 

with the asymptotic homogeneous equation 

diTi,o- 1 +G Ti- l,o=O 
( ) 

and solution 

Ti,o = - . 
This is an exponentially decaying solution, so the equation must be solved by 
starting at i = 0 and iterating outwards. 

By factoring the tridiagonal matrix and then solving for _TO in this way, we were 
able to essentially eliminate inaccuracies due to round-off error, however, the 
preceding discussion shows that the truncation error with this algorithm may be 
significant. In the limit of large i, the tridiagonal Eq. (7) reduces to Eq. (12), with 
solutions given by Eqs. (13) and (14). For lh2g14 1, these solutions reduce to the 
expected exponential solution of the original different equation. For larger values of 
Ih2gl, the discrete solution deviates significantly from the continuous solution, and 
for h2g < -6, 5 < 0 so that the sign of the discrete solution alternates at consecutive 
points. 
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The quantity h2g is given by 

nz 
cosN,+- 

1 

where h, and h, are the r-axis and z-axis partition widths, respectively. If we take 
h, < h,, h2g > -4 and the discrete solution is guaranteed to be well behaved. 

IV. FORTRAN IMPLEMENTATION 

The numerical procedure outlined above has been written into a Fortran 
program and run on a VAXl1/780 computer without floating point accelerator. 
The program completed the calculation of the potential and both components of 
the field on a spatial grid, containing (iv, x N,) = 51 x 32 mesh points, in 
approximately 10 seconds. Although care was taken to write efficient Fortran code, 
no serious effort was made to further optimize the speed of execution, and 
significant improvements are probably possible here. In the program, for each value 
of r, p(r, z) in Eq. (1) is Fourier transformed in the z-dimension yielding the 
functions p,(r) in Eq. (3). For each value of n, this equation is solved for the d*(r), 
using the cubic spline differential equation solver. For each n, Eq. (8a) is used to 
determine the coefficients {T,, } which are just the values of 

ad, 
ar 

at each point, ri. The z-component of the field is determined by fast inverse cosine- 
transforming the set 

2 . 
5;; ‘ln 2a ( 1 

!@ q$” 

and the r-component is obtained by the fast inverse sine-transforming the set 

The algorithm was tested at two levels. First, the solution to Eq. (3) was obtained 
using the spline expansion and compared to analytical solutions obtained for given 
source functions pn. To test for round-off errors, source functions leading to cubic 
polynomial solutions were tested. The algorithm produced results which agreed 
with the analytic solution to within machine round-off error. Fast variations in pn 
with r were also tested giving very satisfactory results. The second test was on the 
complete algorithm, i.e., the numerical solution to Eq. (1). For this test, a test 
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charge density consisting of a set of spheres, each of uniform charge density, placed 
between two conducting planes was used. The position, radius, and charge density 
of the spheres were independently varied. The field from a charge distribution of 
this type can also be calculated readily by the method of images, although many 
images are needed to ensure proper convergence. A separate program was written 
to calculate the field using this method, and the results were compared with our 
algorithm. The results of these tests are given in the last section. 

The algorithm described in this paper is easily implemented and is suitable for 
use as a subroutine in simulation problems requiring the repeated solution of 
Poisson’s equation. We currently use a subroutine based on the algorithm in several 
separate applications related to numerical studies of space-charge-dominated 
transport in gases, and have found it to perform reliably and accurately. Although 
the error analysis we have described and the test results we present were carried out 
assuming a uniform radial grid spacing, the algorithm is readily applied to the 
problems with non-uniform grid spacing in the radial direction. In our applications 
we typically take the radial grid spacing to be uniform for the innermost radial 
points, and then to be exponentially increasing for the rest. A complete code may 
be obtained from the authors. 

V. TEST RESULTS 

The results we obtained in these tests depended on the charge density used, but 
they were generally good. The most completely studied charge distribution was that 
of a single uniform sphere of charge. In most tests, h,/h, was approximately one so 
that significant truncation errors may be expected for high-frequency Fourier com- 
ponents. Nevertheless, as long as the diameter of the sphere was at least several 
times the partition spacing, the spline algorithm produced a potential field which 
agreed with the image charge routine to within 2%. The error in the calculated 
electric field component was of similar magnitude, although at a few isolated points, 
associated with the sharp edge of the charge distribution, the error was as much as 
10%. Figure 1 shows the input charge distribution and the calculated fields and 
associated errors. From Fig. la it is evident that the sampling error associated with 
this grid spacing is significant, and we believe most of the errors in the calculated 
fields are due to this factor. 

In a more stringent test, we checked the accuracy of the program using an input 
charge density consisting of two equally but oppositely charged spheres of equal 
radii, but displaced by (5/2) h,, where h, is the partition dimension in the z-direc- 
tion. These results are shown in Fig. 2. From Fig. 2a it is evident that the charge 
density sampling error is substantial in this case. We found the error in the 
calculated fields to be generally of the order of a few percent, but at several isolated 
points the error was of the order of 25%. These points are located near the sharp 
discontinuities in p, consistent with the sampling error in p. Other tests were run 
with both greater and smaller displacements of the two spheres of charge and we 



FIG. 1. Results of the algorithm for a single, uniform sphere of charge density. (a) Input charge den- 
sity; (b) calculated potential and error; (c) calculated z-component of the electric field and error; (d) 
calculated r-component of the electric field and error. 
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a. P 
f 

FIG. 2. Results of the algorithm for two uniform spheres of charge, equally but oppositely charged 
and of equal radii, and axially displaced from each other. (a) Input charge density; (b) calculated poten- 
tial and error; (c) calculated r-component of the electric field and error; (d) calculated z-component of 
the electric field and error. 
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found the maximum error to vary with separation in a way consistent with this 
interpretation. 

For these two-sphere test charge densities, the Fourier transformed density has 
strong high-frequency components. According to the discussion in Section III, 
significant truncation error may be expected for these cases. It is difficult to separate 
truncation from sampling errors, but asymptotically we expect truncation errors to 
produce a radially oscillating solution, which we do not observe in these tests. For 
this reason we believe that the error analysis in Section III is overly pessimistic in 
the non-asymptotic region, at least for the class of driving functions we have tested. 

APPENDIX: EXPLICIT FORMULAE FOR LAND _o 

The explicit representation of Eq. (7) follows. For 2 < i < N, - 1, and defining 
fi= l/r,, and 

2 
gi’q 

( 

nrl 
--1 ) cost,+ 1 

) 

the tridiagonal matrix Q is given by 

Qi,j==A,,~E,6i,j+,+(Ai,~+Ai,~F,-Bi,,Ei+1)6,, 

- tBi,O + Bi,lFi+ 1) 6i,j- 1 

and the driving vector _a by 

a,=Xj+Bi,Wi+l-Ai,Wi 

where 

and 

& = 1 - fh;gi, Ai,, = hi( 1 - @ifi) 

Bi,#=l +#fgj+lp Bi,l = #ffi+ 1 

c,,= -qligi c,, = 1 - $hifi 

Di,0=4higi+l Dj,l = 1 + @ifi+ 1 

Xi= -ihf(pj+ 1+ 2pi)9 yi’ -@i(Pi+l +pi) 

hi=ri+l-ri 

wi+ I= tAi,l yi- ci,lxi)ldi+ 1 

Ei+l=(Ci,lAi,o-Ai,lCi,,)ldi+, 

Fi+ 1 = tAi,lDi,O- Ci,lBi,OYdi+ 1 

di+l=Ci,*Bi,l-Ai,lDi,l. 

(Al) 

(A21 

(A3) 

(A4) 
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Because of the (l/r)(&$,/&) term in Eq. (3), the r = 0 point must be treated 
specially. Expanding the derivative in a Taylor series, and keeping the lowest non- 
vanishing term, we obtain, in place of Eq. (6d), 

=0,2 + go To,, = P,(O) (4 
Qo,o = Do.1 Ao.0 - Bo.1 co.0 3 Q1,0=~1,1~1 

QOJ = Bo,,Do,o - Do.1 Bo.09 Ql,l=A,,o+A,,,F,-B,,,E, (A61 

60 = Do,1 x0 - Bo.1 yo, Cl =x1 + Bl.1 w2 - Al,, WI (A7) 

where 

Ao,o= 1 -&k%, AO,l = ho 
Bo,o= 1 +#g,, Bo,1= %vl 
co,0 = - %I go, co.1 = 1 
Do,0 = 90 g 1, Do,1 = 1 + &d-1 
x0 = - s3Po + Pl), yo= -~~obo+2p,) 

and for the boundary condition d,(R) given, 

QN,N- I = 0, QN,N = 1 
ON = &I(~). 

WI 

(A91 
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